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ABSTRACT 
Using partial wave unitarity and the observed density of the Universe, we 

show that any stable elementary particle which was once in thermal equilibrium 
cannot have a mass greater than 340 TeV. An extended object which was once 
in thermal equilibrium cannot have a radius less than 7.5 x 10m7 F. A lower limit 
to the relic abundance of such particles is also found. 
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The idea that the dark matter known to exist in galactic halos consists of 

some, as yet undiscovered, stable massive particle has received a great deal of 

attention in recent years. Dozens of particle candidates have been suggested and 

new ones are constantly being invented. Most of these dark matter candidates 

have relic abundances which are calculated in the “Lee-Weinberg” manner and 

model parameters are typically adjusted to allow their density today to be near 

critical density, Rx c 1. In this letter we wish to point out, that for almost any 

such particle which was once in thermal equilibrium and has an abundance deter- 

mined in this way, partial wave unitarity of the S matrix bounds the annihilation 

cross section in the early universe, which in turn bounds the relic abundance and 

the mass of the particle. In general we find that stable elementary particles with 

masses greater than around 340 TeV are very likely excluded. Extended objects’ 

with radii less than 7.5 x 10m7 F are also very likely excluded. 

As an application of these limits, we note that the claim of Enqvist, et al.,’ 

that there is no upper limit from cosmology on the mass of a stable Dirac neutrino 

cannot be true. While the mass upper limit we find is not rigorous and rather 

high, we still feel it may be of some interest because of its general nature. 

The relic abundance of a particle species, X, which was once in thermal and 

chemical equilibrium, is determined by its total thermally averaged annihilation 

cross section (o(XY -+ all)v,,l) at f reeze-out. At high temperatures the number 

density of X’s is roughly the same as the number density of photons, but as 

the temperature drops below the mass of the X, their number density drops 

exponentially. This continues until the total annihilation cross section is no 
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longer large enough to maintain equilibrium and the X number density then 

“freezes-out”. The number density today is given roughly by3 

Rxh2= 
1.07 x 10g(n + l)zj+‘GeV-’ 

9%$,(~w); 

x 3 x lo-“cm3/sec 

hel), 
, (1) 

where Rx = px/pcrit is the present average density of X’s divided by the critical 

density, i 5 h 5 1 is the Hubble constant in units of 100 km/sec/Mpc, zf = 

m.y/Tf, Tf is the freeze-out temperature, gt z 107 is the effective number of 

degrees of freedom at Tf, and mpl = 1.22 x 10lg GeV. 

Since the annihilation is non-relativistic (the velocity of the annihilating X 

particle is 2, = a < 1 at freeze-out) one can expand the cross section in powers 

of v* s t&/4 and keep only the first (or fist two) terms. In thermal averaging 

one replaces (a$) = 6/ rf and so in eq. (1) the cross section is written (u+l) = 

(o+l)‘r-“, where n parameterizes the dependence of the cross section on I. The 

freeze-out temperature is given roughly by3 

z/=lnB-(n+i)lnlnB, (2) 

where B = .038gmp~m~(av,,l)‘/&r and g is the number of degrees of freedom of 

the X particle. Typically Z, KZ 25 corresponding to t&,/4 = l/16 at freeze-out. 

Please note that urel is not really a velocity, but is related to the flux factor. It 

is defined as nrel = 2v, and so 0 5 t&/4 5 1. 

jFrom eq. (1) we see that if (uv~~~)~ << 3 x 10Fz7 cm3/sec, then Rxh* > 1, 

which would be inconsistent with the “observation”, Rtoth2 5 1. Any particle 

model which predicts an annihilation cross section smaller than this critical value 
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at $,/4 % & is therefore inconsistent with cosmology.4 We will now show that 

partial wave unitarity provides a maximum possible cross section and therefore 

a minimum possible Rx h’. Extremely massive elementary particles and very 

small extended objects violate these bounds and therefore are inconsistent with 

cosmology. 

Consider the process a + b + c + a! and the scattering matrix 

(flsli) = (fli) + i(2r)4S4(l’f -pi) (.flTIi) (3) 

where J’i = p. + pb and Pf = p, + pd. The T matrix can be expanded in partial 

waves using the helicity formalism5 

(X,X,jlT(s, fi)IA,&) = 8~s”~e~~(~-~‘) c(2J + l)d:,(6’) (&&lTJ(s)l&I,) , (4) 
.I 

whereX,,...,X d are the helicities of particle a,. . , d. X = A, - &, A’ = A, - Ad, 

s is the Mandelstam variable, R = (6,q5) is th e center-of-mass scattering angle, 

and di,, are the Wigner functions. 

using matrix notation6 (&xdlTJ(s)I&&) = (TJ)if and j& = diag(pl,pz,...), 

where pk is the center of mass three-momentum of particle system i, f, etc. partial 

wave unitarity of the S matrix can be written6 

TJ - Ts = 2iT~fiTj. (5) 

Defining SJ = 1 + 2ifi ‘/‘TJ$/*, we see that partial wave unitarity can also be 
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written SJ.!$ = 1 or 

ISel,J12 + c ISi#f,J12 = 1, (6) 
f 

where Ser,~ stands for the elastic channel, i = f. The next step is to define 

S el,J = we2i6J, where 6~ is a real phase shift and 1)~ is an inelasticity factor, 

0 5 7)~ 5 1. Then ISer,~12 = n’$, and cf ISiff,JI* = 1 - 17:. Finally, using 

T e,,~ = (&J-1)/(&p) and Tf#i,J = sf#i,J/(%m), and the standard formula 

for the unpolarized cross section in terms of partial waves cr = c UJ, where 

4s( 25 + I) 

bJ=(2sa+1)(2Sb+l) x f p, 
cc %I~f,J12> (7) 

we find the result of Pilkuhn’ 

(25 + 1) 

ur’J = 4s(2s, + 1)(&b + 1) 
~~~l~f,J/‘=“(2Jf~‘1-“). (8) 

t 

Here ‘T~,J is the “reaction” cross section, that is, the total cross section minus the 

elastic piece. It has a maximum when T,J = 0, so we conclude that 

gJ(‘J+b-‘c+d)< 
42J + 1) 

P? 

In the early Universe, 

(9) 

4A.4 
2 = E2 - 4 = 4(1 _ v,z,1,4) = m%L/4, 

so ~JW 5 (~J~~%I, where 

(10) 

In order to apply the limits of eq. (10) to the annihilation in the early Universe 

we need to decide which partial waves contribute. After summing over helicities, 

5 



the angular dependence, cos 6’, which indicates the partial wave, enters the cross 

section only through the Mandelstsm variable 

t =d + mz - 2E,E, + 2p,p, cos 0 

=d + d - ~J%E, + 2p, cos B m,yv,,l/2 + o( t&/4). 
01) 

So there is a factor of v,,l appearing with every factor of cos8. In the expansion 

of the annihilation cross section in powers of &/4 x l/16, the lowest order 

term O((t&1/4)‘), therefore has no angular dependence and must be a J = 0 

partial wave. The .7 = 1 partial wave is smaller by a factor t&,/4, and the 

higher partial waves are further suppressed. In fact, since partial wave unitarity 

must hold for any value of $=,/4, and when $,/4 increases, the maximum cross 

section, eq. (lo), decreases, the J = 0 bound, taken when &/4 E l/16, is not 

as stringent as possible. The J = 1 maximum cross section also decreases for 

larger t&/4, and more importantly, the term in the actual cross section of order 

v&/4, increases. If the J = 1 bound is satisfied for a larger value of 1&/4, for 

instance ~34 x l/2, then the J = 1 partial wave is below the bound by a factor 

of 8-3/2 M .04 by freeze-out. We conclude that it is more than adequate to use 

only the J = 0 partial wave in finding a bound. 

Now we use eqs. (l), (2), and (10)~to bound R,yh2 and mx. Including only 

the n = 0 part of the cross section and replacing urel = m, we find that 

Rxh* 2 1.7 x 10-6&(mx/TeV)2 (12) 

for a Majorana fermion with 9 = 2. For a Dirac fermion, R,yh2 is a factor of two 
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larger. Now using Rxh* 2 1, we find the mass limit 

mx 5 340 TeV, (13) 

and rf x 28. Eq. (13) was found for a Majorana fermion. The limit for a scalar 

particle is similar, while for a Dirac fermion is about a factor of fi smaller, that 

is, mx 5 240 TeV. This is the main result of this letter. 

Another, more conservative, way of finding the mass bound is to assume 

that the cross section, eq. (lo), holds throughout the period of annihilation and 

freeze-out. In this case, the u;; factor affects the thermal averaging and the 

integration from freeze-out to today. The thermally averaged maximum cross 

section becomes 

and the relic abundance is given by eq. (l), with n = -l/2, 

R.yh* 2 6($::j 
7 112 

rf (mx/TeV)2. 

(14) 

(15) 

The freeze-out temperature is the same as before with (~“~~1)’ multiplied by a 

factor of (6/z)‘/*. (We set n = -l/2 in eq. (2), both now and before, since 

the z”~ here is just an algebraic factor.) Using these formulas, the mass limit f 

becomes rnx < 550 TeV. This is probably an overly conservative bound since 

one does not expect cru,,l K v,: for annihilation channels in a nonrelativistic 

expansion. 

However, we do not claim that the derivation leading to eq. (13) is rigorous, 

or that exceptions cannot occur. For example, elastic scattering via t-channel 
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exchange of a massless particle gives rise to a term in the matrix element pro- 

portional to t-’ cc v,F(l - cost9)-‘. Naively expanding this would suggest that 

all partial waves contribute to the term of lowest order in &/4. The problem, 

in this case, is that we are outside the Lehmann ellipse of convergence, and the 

partial wave expansion not valid. Fortunately, in annihilation, the mass of the 

annihilation product must be less than mx, and the partial wave expansion con- 

verges, giving nicely the results we claim above. Another possible exception, 

which we do not consider very likely, is that the coefficients of the partial wave 

expansion contain factors of (S - 4m$)-’ 0: u;;, in just such a way as to cancel 

the u,“,1 factors associated with the cos29 factors. For elastic scattering, it can 

be proved that this cannot occur (Ref. 6, page 291), but we have been unable to 

complete the proof for the inelastic case. This may be related to the possibility 

of s-channel poles, which can cause another possible exception to our limit. A 

factor of (.s - mf)-‘, with mi = 2mx will give an additional factor of VET, in 

which case partial waves up to J = 2 need to be included in our maximum cross 

section, and the mass limit weakens. However, we feel that such a pole is unlikely. 

It requires not only an exchange particle of precisely twice the mass of the X, 

but also that the exchange particle be nearly stable. The width of the exchange 

particle will dominate the pole unless it is very smrdl, and since the exchanged 

particle is more massive than the X, and has decay channels into lighter particles, 

we consider this possibility remote. 

We note that the mass limit, eq. (13), mvolves a mass somewhat higher than 

typically considered in particle dark matter model building. But since the bound 

is so general we feel it may be of some use. As an example, we can immediately 
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apply it to candidates which appear in the literature, such as the Dirac neutrino. 

The Dirac neutrino was the first dark matter particle considered and very 

early Zeldovich7 claimed a range of neutrino masses, 3 GeV < m, < 3 TeV, as 

being cosmologically acceptable. His upper bound was based on neutrino annihi- 

lation into fermions through 2 boson exchange. This cross section is proportional 

to rnF2 in the high mass limit. However, Enqvist, Kainulainen and Maalampi* 

noted that the W+W- channel, among others, open up for very massive neutri- 

nos, and that these new channels dominate the cross section in the high mass 

limit. In fact, they claimed that because the cross section keeps growing as my 

increases, there is no upper limit from cosmology on Dirac neutrino masses. This 

claim is clearly contradicted by the bound for Dirac fermions given just after 

eq. (13). Yet we do not believe that that the cross section of Enqvist, et al. is 

in error. We believe that the solution’ to this puzzle is that in the Standard 

Model, where neutrinos get their mass by the Higgs mechanism, as my + 03, the 

neutrino Yukawa coupling becomes large and perturbation theory breaks down. 

Another way of saying this is that the higher loop corrections become important 

in this limit and the tree level calculation of Enqvist, et al. is not applicable. In 

fact, by using unitarity to bound the largest eigenvalue of the scattering matrix, 

Chanowitz, F’urman and Hinchliffe,’ showed that the breakdown of perturbation 

theory occurs at around m, N 1 TeV, far below the limit we set. The breakdown 

of perturbation theory suggests that the neutrino becomes “strongly interacting” 

and could not exist as a free, stable state. In this case, the annihilation cross sec- 

tion would be governed by different physics, if the theory made sense at all. If, on 

the other hand, the neutrino for some reason stays “elementary”, we argue that 
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our limit applies, giving an upper limit on the neutrino mass from cosmology, 

just as Zeldovich originally suggested (though at a different value). 

Finally, we should comment on the applicability of these bounds to extended 

objects. For these objects, higher partial waves will generally contribute to the 

nonrelativistic cross section, and the cosmological mass bound, eq. (13) does 

not apply; however, partial wave unitarity may still be used to limit the total 

annihilation cross section, and cosmology provides a constraint on the size of such 

objects. Consider an extended object with spin 0 and radius R,y. The highest 

partial wave that can contribute to the particle-antiparticle collision is roughly 

J - 2mxv,lRx, resulting in a maximum total cross section, maz - 

(~“relbnoz = --!T-- 
J”,.. 

m;v,el p + 1) = ~67FG&l~ (16) 

four times the geometric cross section. Using eqs. (l), (2), and (16), we can now 

bound R,yh2 and Rx. We find that 

R h2 > 4 x lo-%; 
x - 

(Rx/F)~ 
(17) 

which leads to the bound 

Rx 2 7.5 x lo--? F. 08) 

Here we used rf = 27 which was obtained from eq. (2) using mx = 1000 TeV; 

the radius limit, eq. (18), varies only logarithmically with m,v. The limit for spin 

i particles is more stringent by a factor of a. 
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We point out that eq. (16) is valid only if J,,, > 1. On the other hand, 

if .I,,, < 1, the cross section is bound by eq. (9) with J=O. Since freeze-out 

occurs when v,,l % $, eq. (18) is reliable only when R,y >> l/mx, while an object 

with Rx << l/mx must be considered point-like and its mass limited by eq. (13). 

Furthermore, we note that there is no major discontinuity in the overlap region, 

Rx - l/mx, since the mass limit for point-like particles, eq. (13), is very nearly 

that which we would have obtained from the radius limit, eq. (18), had we used 

the Compton wavelength of the particle for Rx. 

In conclusion, although our derivation is not rigorous, and exceptions may 

exist, we believe that the limit on mass, eq. (13), radius, eq. (18), and relic 

abundance, eq. (12) should apply to almost any dark matter particle which was 

once in thermal and chemical equilibrium. 
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